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Abstract

In this paper, we present a method for computing direct numerical simulations of narrow optical beam waves

propagating and scattering in a plane-parallel medium. For these computations, we use Fourier and Chebyshev spectral

methods for three-dimensional radiative transfer that also includes polar and azimuthal angle dependences. We treat

anisotropic scattering with peaked forward scattering by using a Clenshaw–Curtis quadrature rule for the polar angle

and an extended trapezoid rule for the azimuthal angle. To verify our results, we compare this spectral method to

Monte Carlo simulations.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of radiative transfer models light propagation and scattering in random media [1,2]. Al-

though this theory is well known, analytical solutions are not available except for relatively simple prob-

lems. Therefore, many have put forth a great deal of effort into developing numerical methods that

accurately approximate solutions. For example, the searchlight problem in which a narrow beam impinges

a scattering medium still represents a numerical challenge today.
Other than Monte Carlo simulations, there are few highly accurate methods that adequately compute

solutions to this problem. We mention here the work of Chang and Ishimaru [3], Ganapol et al. [4], and

Barichello and Siewert [5] among others. In these works, Fourier transform procedures are used for the

transverse spatial variables leading to one-dimensional radiative transfer equations for each spatial fre-

quency. They all consider normally incident beams to take the advantage of the cylindrical symmetry that
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reduces the dimension of the problem from five independent variables to four. Chang and Ishimaru solve

these resultant equations using a two-dimensional Gaussian quadrature rule and an eigenvalue–eigenvector

technique. Ganapol et al., and Barichello and Siewert consider the additional assumption of isotropic

scattering. Then the solution to the searchlight problem can be found through solving the so-called pseudo-

problem which is a modified, one-dimensional equation of transfer [6].

In this paper, we undertake the searchlight problem. This particular problem is especially relevant to

studies of spatially narrow optical beams propagating in scattering media such as fog, clouds as well as

biological tissue [2]. In these applications the scattering is usually anisotropic with highly peaked forward
scattering phase functions. Here we take special consideration to develop direct numerical simulation

methods that do not rely too heavily on any particular aspects of this problem. In particular, neither

normally incident beams nor isotropic scattering is assumed. We consider the problem presented here as an

initial effort toward effectively addressing large scale radiative transfer computations, such as problems with

time, polarization, and inhomogeneities.

Three numerical treatments comprise the numerical method in total. As in the previous works we use

Fourier transforms for the transverse spatial variables. We use a Chebyshev spectral method for the vertical

spatial variable. Chebyshev spectral methods have already demonstrated extremely accurate results with
super-algebraic convergence rates for one-dimensional problems [7]. This spectral approximation produces

a sparse system of integral equations for the angle dependent expansion coefficients. This system of integral

equations is solved using Nystr€oom methods that use the Clenshaw–Curtis rule for the polar angle variable

and the extended trapezoid rule for the azimuthal angle variable.

After presenting the radiative transfer equation and boundary conditions for our model problem in

Section 2, we briefly explain the spectral method for this problem in Section 3 by identifying its three key

features. In Section 4, we present some example computations in which we compare results from the

spectral code with Monte Carlo simulations to ensure consistent results. We conclude in Section 5 with
some final remarks.

2. The radiative transfer equation

The radiative transfer equation

bXX � rIðr; bXXÞ þ raðrÞIðr; bXXÞ ¼ �rsðrÞ Iðr; bXXÞ
�

�
Z
S2

P ðbXX; bXX0ÞIðr; bXX0Þ dbXX 0
�

ð1Þ

models continuous light propagation in a scattering and absorbing media [1,2]. The fundamental quantity

of radiative transfer is the specific intensity or radiance I . It depends on a position vector r and a unit

direction vector bXX. The scattering cross-section rs and the absorption cross-section ra characterize the

optical properties of the medium. The integral operation in (1) that involves the scattering phase function
P ðbXX; bXX0Þ takes place over the unit sphere S2. This phase function dictates the directional distribution of

light that scatters in direction bXX due to waves of unit energy density incident in direction bXX0, and it is

normalized according toZ
S2

P ðbXX; bXX0Þ dbXX0 ¼ 1: ð2Þ

Consequently, when ra ¼ 0 Eq. (1) is a statement of power conservation. In (1) we have neglected polar-

ization effects.

For this study, we are interested in computing solutions to Eq. (1) in a homogeneous plane-parallel

medium on which a collimated beam is incident in some specific direction. Because the medium is
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homogeneous, the scattering and absorption cross-sections are constant. Representing (1) in Cartesian

coordinates (see Fig. 1), we have

l
o

oz

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos/

o

ox

�
þ sin/

o

oy

�
þ rt

�
Iðx; y; z; l;/Þ

¼ rs

Z 2p

0

Z þ1

�1

P ðl;/; l0;/0ÞIðx; y; z; l0;/0Þ dl0 d/0; ð3Þ

where rt ¼ rs þ ra. We define the plane-parallel medium as 0 < z < L where the x and y variables are

unbounded (�1 < x; y < 1). We define the cosine of the polar angle as l ¼ cos h which ranges from

�16 l6 1 and the azimuthal angle as / which ranges from 06/ < 2p.
For our discussion here, we assume that the boundaries are index-matched. In other words, the re-

fractive index in the medium contained between the two boundary planes 0 < z < L is the same as the

refractive index outside of the medium z < 0 and z > L. At z ¼ 0, we consider a collimated beam of width

w0 incident in some specified direction ðl0;/0Þ. This beam, incorporated into the mathematical problem

through the boundary condition

Iðx; y; z ¼ 0; l;/Þ ¼ F0 exp
�
� ðx2 þ y2Þ

w2
0

�
dðl � l0Þdð/ � /0Þ ð4Þ

for 0 < l6 1 and 06/ < 2p, is the only source of radiation. Hence, at z ¼ L, we impose that no light enters

into the medium through the boundary condition

Iðx; y; z ¼ L; l;/Þ ¼ 0 ð5Þ

for �16l < 0 and 06/ < 2p. Finally, we impose that the specific intensity vanishes sufficiently fast as the

distance from the beam center (x ¼ y ¼ 0) increases

Iðx; y; z; l;/Þ ! 0 as x2 þ y2 ! 1: ð6Þ

We note that an alternative way of describing beam sources at the boundary is to solve only for the diffuse

component of the intensity. In that case one obtains a homogeneous boundary condition instead of (4), but

(3) has an additional source term F ðx; y; z; l;/Þ [3].

Fig. 1. A sketch of the plane-parallel problem.
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3. Numerical scheme for radiative transfer

Three numerical treatments comprise the numerical scheme in total. First, we treat the transverse spatial

variables x and y using Fourier spectral methods. Then, we approximate the z-dependence of the specific

intensity by a Chebyshev spectral method to obtain a linear system of integral equations. Finally, we

numerically solve this system using a Nystr€oom method that uses the Clenshaw–Curtis quadrature rule for

the polar angle and an extended trapezoid rule for the azimuthal angle.

3.1. Fourier spectral method

Because of the condition given in Eq. (6), we are motivated to consider the Fourier transform

ÎIðn; g; z; l;/Þ ¼
Z þ1

�1

Z þ1

�1
Iðx; y; z; l;/Þ exp½�inx� igy� dx dy ð7Þ

of the specific intensity I with respect to x and y. The Fourier transform of the radiative transfer equation

that governs ÎI is then

l
o

oz

�
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
n cos/ð þ g sin/Þ þ rt

�
ÎIðn; g; z; l;/Þ

¼ rs

Z 2p

0

Z þ1

�1

P ðl;/; l0;/0ÞÎIðn; g; z; l0;/0Þ dl0 d/0: ð8Þ

The boundary condition (4) transforms to

ÎIðn; g; z ¼ 0; l;/Þ ¼ F0pw2
0 exp

�
� 1

4
w2

0ðn
2 þ g2Þ

�
dðl � l0Þdð/ � /0Þ ð9Þ

for 0 < l6 1 and 06/ < 2p. The boundary condition (5) transforms to

ÎIðn; g; z ¼ L; l;/Þ ¼ 0 ð10Þ

for �16 l < 0 and 06/ < 2p. Notice that the dependence on ðn; gÞ in (8)–(10) is parametric and so one
can numerically solve for each spatial frequency pair needed in a two-dimensional discrete Fourier

transform since they are decoupled from all other frequency pairs. In addition, because the intensity is a

real-valued function, one only needs ‘‘half’’ of the two-dimensional spatial frequency spectrum to invert

numerically the specific intensity into the physical domain. We also note that if l0 ¼ 1 then the problem has

cylindrical symmetry and the transfer equation (8) and the boundary conditions (9) and (10) depend only

on m ¼ ðn2 þ g2Þ1=2.

3.2. Chebyshev spectral method

Since the specific intensity�s dependence on ðn; gÞ is parametric in (8), we suppress this dependence in the

notation that follows. First, we perform the change variables s ¼ 2z=L� 1 in (8) and obtain

2l
L

oÎIðs;l;/Þ
os

þ cðl;/ÞÎIðs; l;/Þ ¼ rs

Z 2p

0

Z þ1

�1

Pðl;/; l0;/0ÞÎIðs; l0;/0Þ dl0 d/0; ð11Þ

where

cðl;/Þ ¼ rt þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
ðn cos/ þ g sin/Þ: ð12Þ
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The spatial domain of this problem is �1 < s < 1. Next, we approximate the s-dependence of the specific

intensity with a Chebyshev spectral approximation

ÎIðs; l;/Þ ffi
XN
k¼0

akðl;/ÞTkðsÞ; ð13Þ

where TkðsÞ ¼ cos½k cos�1ðsÞ� is the Chebyshev polynomial of order k. The Chebyshev polynomials are

normalized so that Tkð�1Þ ¼ ð�1Þk and satisfy the orthogonality conditionZ 1

�1

TjðsÞTkðsÞ
dsffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ¼ p
2
ckdj;k; ð14Þ

where dj;k is the Kronecker delta and

ck ¼
2 for k ¼ 0;N ;
1 for k ¼ 1; . . . ;N � 1:



ð15Þ

The spatial derivative of the specific intensity is given by another Chebyshev spectral approximation

oÎIðs; l;/Þ
os

ffi
XN
k¼0

Akðl;/ÞTkðsÞ; ð16Þ

where Akðl;/Þ is related to akðl;/Þ through

akðl;/Þ ¼
1

2k
ck�1Ak�1ðl;/Þ½ � Akþ1ðl;/Þ� for k ¼ 1; 2; . . . ;N : ð17Þ

By substituting Eqs. (13) and (16) into (11) and using the orthogonality property (14), we obtain

2l
L
Akðl;/Þ þ cðl;/Þakðl;/Þ ¼ rs

Z 2p

0

Z þ1

�1

P ðl;/; l0;/0Þakðl0;/0Þ dl0 d/0 ð18Þ

for k ¼ 0; . . . ;N . Now, by applying (17) to (18), we obtain the linear system of integral equations:

2l
L
A0ðl;/Þ þ Q½a0�ðl;/Þ ¼ 0; ð19aÞ

2l
L
A1ðl;/Þ þ Q½A0�ðl;/Þ �

1

2
Q½A2�ðl;/Þ ¼ 0; ð19bÞ

2l
L
Akðl;/Þ þ

1

2k
½Q½Ak�1�ðl;/Þ � Q½Akþ1�ðl;/Þ� ¼ 0 for k ¼ 2; . . . ;N � 1; ð19cÞ

2l
L
AN ðl;/Þ þ

1

2N
Q½AN�1�ðl;/Þ ¼ 0; ð19dÞ

where

Q½f �ðl;/Þ ¼ cðl;/Þf ðl;/Þ � rs

Z 2p

0

Z þ1

�1

Pðl;/; l0;/0Þf ðl0;/0Þ dl0 d/0: ð20Þ

This tridiagonal linear system of integral equations gives N þ 1 equations for N þ 2 unknown functions a0,
A0;A1; . . . ;AN .
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By adding an equation corresponding to the boundary conditions (9) and (10), one obtains a well-posed

linear system of integral equations. At the boundary s ¼ �1 (z ¼ 0) we have the condition

ÎIðs ¼ �1; l;/Þ ¼ F0pw2
0 exp

�
� 1

4
w2

0ðn
2 þ g2Þ

�
dðl � l0Þdð/ � /0Þ ¼

XN
k¼0

ð�1Þkakðl;/Þ ð21Þ

defined over the angular domain 0 < l6 1 and 06/ < 2p. At the boundary located at s ¼ 1 (z ¼ L) we
have the condition that

ÎIðs ¼ þ1; l;/Þ ¼ 0 ¼
XN
k¼0

akðl;/Þ ð22Þ

defined over the angular domain �16 l < 0 and 06/ < 2p. Hence, the composition of (21) and (22) yields
a single equation over the entire unit sphere S2. Furthermore, by applying (17) to (21) and (22), we obtain

the remaining equation needed in terms of the unknown functions given in (19a)–(19d).

We mention here that in solving the transfer equation, one often splits its solution into the ballistic

(uncollided) component and the diffuse (collided) component. The ballistic component has a trivial singular

solution given by geometric optics. The diffuse component arises from one or more scattering processes and

satisfies the radiative transfer equation (3) with the additional source term

F̂F ðs; l;/Þ ¼ rsF0pw2
0P ðl;/; l0;/0Þ exp

�
� w2

0

4
ðn2 þ g2Þ � cðl0;/0Þ

Lðsþ 1Þ
2l0

�
ð23Þ

and homogeneous boundary conditions. This source contains oscillating terms proportional to exp½�inLs�
and exp½�igLs�. For large values of nL and gL, this source oscillates rapidly in s thereby requiring spectral

approximations of very high order. Hence, for a fixed number of Chebyshev modes, one is limited by

medium thickness or transverse spatial resolution. However, by using the method we explain above, we do

not encounter these oscillations explicitly. This particular approach is an important difference from those

presented in [3,7,8].

3.3. Nystr€oom method

Since spatial variables are treated with highly accurate spectral approximations, one can choose any

suitable method to solve the system given by (19a)–(19d), (21), and (22). Here, we use a Nystr€oom method

[10] in which one chooses quadrature rules with particular abscissas and weights to approximate the in-

tegral operations. We choose this method solely because of its ease of implementation with good accuracy.
For more detailed studies of scattering, a different numerical treatment may give better results and does not

compromise any other aspect of the method. However, that decision is case dependent.

To compute approximations to the azimuthal integral operation, we use an extended trapezoid rule since

functions of the azimuthal angle variable / are 2p-periodic. This extended trapezoid rule takes the formZ 2p

0

f ð/Þ d/ ffi
XN/

m¼1

f ð/mÞW ð/Þ
m : ð24Þ

The corresponding quadrature abscissas and weights are

/m ¼ 2pðm� 1Þ
N/

; ð25aÞ

W ð/Þ
m ¼ 2p

N/
ð25bÞ

for m ¼ 1; 2; . . . ;N/.
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For the polar angle variable l, we use a Clenshaw–Curtis quadrature rule. This is a closed Gaussian

quadrature rule similar to a Chebyshev quadrature rule, but with a unit weight function [10]. This quad-

rature rule takes the form

Z þ1

�1

f ðlÞ dl ffi
XNl

l¼0

00f ðllÞW
ðlÞ
l ; ð26Þ

where the double quotation marks on the summation indicate that the first and last terms are multiplied by

a factor of 1=2. The quadrature abscissas and weights are defined as [10]

ll ¼ cos
pl
Nl

� �
; ð27aÞ

W ðlÞ
l ¼ 4

Nl

XNl

n¼0
n even

00 1

1� n2
cos n

lp
Nl

� �
ð27bÞ

for l ¼ 0; 1; . . . ;Nl. Our numerical approximation to Q therefore takes the form

Q½f �ðl;/Þ ffi cðl;/Þf ðl;/Þ � rs

XNl

l¼0

00W ðlÞ
l

XN/

m¼1

P ðl;/; ll;/mÞf ðll;/mÞW ð/Þ
m : ð28Þ

The boundary condition (21) contains delta functions in l and /. Here, we consider the case in which the
angle of incidence corresponds to the quadrature abscissas ðl0;/0Þ ¼ ðll0 ;/m0 Þ. Then we impose that

XN
k¼0

ð�1Þkakðll;/mÞ ffi F0pw2
0

exp � w2
0ðn

2 þ g2Þ=4
� �

W ðlÞ
l0 W ð/Þ

m0

dl;l0dm;m0 : ð29Þ

By considering the values of the Chebyshev expansion coefficients in (19a)–(19d), (21), and (22) only at the

quadrature points, one obtains a bordered, block tridiagonal linear system of equations. Each of the N þ 2

blocks has size q ¼ Nl � N/. A remarkable aspect of this system is that only the matrix approximating Q
given by (28) and a q-vector with entries 2ll=L are needed to store the entire bordered, block tridiagonal

matrix (see [8] for details). Kim and Ishimaru [7] explain the application of the generalized deflated block

elimination method [11] to solve this particular linear system efficiently.

3.4. Performance

The most intensive computation in this procedure is solving (19a)–(19d), (21), and (22) after imple-
menting (28). This method requires Oðq3½N � 1�Þ operations where N is the number of Chebyshev modes

and q is related to the number of quadrature points. Hence, the work scales linearly with respect to the

number of Chebyshev modes, but cubically with respect to the number of quadrature abscissas. For ex-

ample, a single linear system solve using q ¼ 80 (Nl ¼ 10 and N/ ¼ 8) and N ¼ 33 takes less than 2 s on a

850MHz Pentium-III Linux workstation.

Although the accuracy and stability of this method is not restricted to isotropic scattering, highly an-

isotropic scattering requires several more quadrature abscissas to resolve sharp peaks in the phase function.

Hence, computations using the Nystr€oom method discussed above can become restrictively large because q
increases. For this situation it is advantageous to consider alternate numerical methods to approximate the

scattering operator that yield a smaller matrix approximating Q.
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This linear system must be solved for each Fourier pair ðn; gÞ in the computational spectrum. The work

needed for the entire spectrum scales linearly with the number of spatial modes. However, a highly resolved

transverse spatial computation requires solving several linear systems leading to large computations. In

special situations such as cylindrical symmetry for normally incident beams, one can reduce the number for

spatial modes needed by identifying additional symmetries in n and g. However, in general, these sym-

metries are not available.

4. Numerical examples

Here, we present computations for different values of the parameters of the problem. In addition, we

examine the consistency of our numerical method by comparing it with Monte Carlo simulations. For our

study we consider the Henyey–Greenstein phase function that is commonly used in studies of optics in fog,

clouds, and biological tissue [2]. The Henyey–Greenstein phase function is defined as

P ðl;/; l0;/0Þ ¼ 1

4p
1� g2

ð1þ g2 � 2g cosHÞ3=2
; ð30Þ

where

cosH ¼ ll0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þð1� l02Þ

q
cosð/ � /0Þ ð31Þ

is the cosine of the scattering angle made between unit vectors ðl;/Þ and ðl0;/0Þ. This particular phase

function is parameterized only by the anisotropy factor g and varies smoothly from isotropic scattering

(g ¼ 0) to narrow forward peak scattering (g � 1) or backward peak scattering (g � �1).
After computing the solution to the linear system for the Chebyshev expansion coefficients for each

spatial frequency pair over some two-dimensional discrete spectrum, we invert that data into the physical

domain using discrete Fourier transforms. To examine the data we compute the magnitude of the trans-

mitted flux

Ftðx; yÞ ¼
Z 2p

0

Z þ1

0

lIðx; y; s ¼ þ1; l;/Þ dl d/ ð32Þ

and the magnitude of the backscattered flux

Fbðx; yÞ ¼
Z 2p

0

Z 0

�1

�lIðx; y; s ¼ �1; l;/Þ dl d/: ð33Þ

We approximate these integrals using the quadrature rules used to approximate the scattering operator

described in Section 3.3.

Plots of some of these results appear in Fig. 2. Here, we have plotted contours of the transmitted and
backscattered fluxes normalized to the incident flux on a dB scale defined as 10 log10ðFt;b=F0Þ. These par-

ticular computations correspond to a medium of optical thickness rtL ¼ 5 with rs ¼ 0:99, ra ¼ 0:01, and
g ¼ 0:2. Figs. 2(a) and (b) are plots of computations involving a normally incident l0 ¼ 1 and /0 ¼ 0 beam

of width rtw0 ¼ 1. Figs. 2(c) and (d) are plots of the same computations, but with an obliquely incident

l0 ¼ 0:7660 (h0 ¼ 40�) and /0 ¼ 0 beam of width rtw0 ¼ 1. Both of these computations used 33 Chebyshev

modes, 256 Fourier modes for y, 129 Fourier modes for x (recall that only half of the spectrum is needed

since I is real), 10 l-abscissas, and 8 /-abscissas. As an initial test to verify the accuracy of the method with

these parameters, we computed a similar case in which ra ¼ 0 so that power is conserved [2]. With these
parameters this method conserves power to within 0.01%.
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In Figs. 2(a) and (b), we clearly observe the radial symmetry in the transmitted and backscattered fluxes

manifested from the cylindrically symmetric computation. One particularly advantageous aspect of this

method is that one can consider obliquely incident beams. In that case, one simply changes the values of the

indices ðl0;m0Þ in (29) to correspond to the desired direction of incidence. Figs. 2(c) and (d) show an example

involving an obliquely incident beam wave. Notice here that the radial symmetry of the transmitted and

backscattered fluxes is broken as a result of the oblique incidence.

To ensure that this method is consistent, we compare results computed by this spectral method with

those from Monte Carlo simulations. Monte Carlo simulations involve tracing individual photons as they
propagate in and interact with the medium, and recording a score each time a photon encounters the

scoring region. The scoring method we have used is a ring detector technique that is valid for normally

incidence beams (l0 ¼ 1). Because this problem is symmetric the ring detector estimates the average flux on

a ring rather than the flux at the surface of a real detector. Since the score converges to the expected value at

the rate const./
ffiffiffiffi
N

p
, where N is the number of scores, the ring detector technique gives lower variance es-

timates. Particularly important is the fact that the ring detector has finite variance even in a scattering

medium. For a more detailed discussion on Monte Carlo methods for photon transport problems we refer

to [9] and references therein.
In Fig. 3 we plot a comparison between results from the spectral method and Monte Carlo simulations.

The medium properties are rs ¼ 1:0 and ra ¼ 0:0 with isotropic scattering g ¼ 0. The parameters used for

the spectral computation are the same as stated above corresponding to Fig. 2 for the normally incident

Fig. 2. Example radiative transfer computations. (a) and (b) show, respectively, the contour plots of the transmitted and backscattered

flux responses (dB scale) of a normally incident beam (l0 ¼ 1) from a homogeneous medium of optical thickness L ¼ 5 using the

Henyey–Greenstein phase function with g ¼ 0:2. The width of the beam, in optical units, is 1. Plots (c) and (d) show a similar

computation but for an obliquely incident beam with l0 ¼ 0:7660 (h ¼ 40�) and / ¼ 0.
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beam. Here, we plot the cross-section of the transmitted and backscattered fluxes at y ¼ 0 for xP 0. De-
viations occurring at large distances from beam center are due to the periodic ‘‘wrap-around’’ in discrete

Fourier transform approximations. These errors can be overcome by considering wider spatial domains.

Nonetheless, we observe excellent agreement between the two methods thereby demonstrating the con-

sistency of the spectral method.

We plot another comparison in Fig. 4 to examine anisotropic scattering with g ¼ 0:4. To account for the

higher anisotropy in these computations, we used 10 l-abscissas and 10 /-abscissas. Otherwise, the pa-

rameters settings used for these results are the same as described for examples above. With this particular

parameter setting, we obtain power conservation within 0:2%. We still observe excellent agreement between
the two different methods apart from the same deviations seen in Fig. 3 at large distances from beam center.

5. Conclusions

We have presented a numerical method for the searchlight problem in which a narrow optical beam

impinges a plane-parallel scattering medium. It is not restricted to normal incidence or isotropic scattering.

It uses Fourier spectral methods to obtain a one-dimensional equation of transfer for each transverse
spatial frequency pair. A Chebyshev spectral approximation for the remaining spatial variable yields a

Fig. 3. Comparison between the spectral method (solid line) and a Monte Carlo method. We show the cross-section y ¼ 0. The pa-

rameters used are the same as in Figs. 2(a) and (b) but with rs ¼ 1:0, ra ¼ 0:0, and g ¼ 0.

Fig. 4. Same as Fig. 3 but with g ¼ 0:4.
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linear system of integral equations. We use a Clenshaw–Curtis quadrature rule for the polar variable and an

extended trapezoid rule for the azimuthal variable to solve these integral equations. We have shown its

consistency through comparisons with Monte Carlo simulations of the same problem. With its high

accuracy, and relative ease of implementation, this spectral method holds great potential for large scale

radiative transfer computations.
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